Facets for the Multiple Knapsack Problem
نویسندگان
چکیده
In this paper we consider the multiple knapsack problem which is deened as follows: given a set N of items with weights f i , i 2 N, a set M of knapsacks with capacities F k , k 2 M, and a proot function c ik ; i 2 N; k 2 M; nd an assignment of a subset of the set of items to the set of knapsacks that yields maximum proot (or minimum cost). With every instance of this problem we associate a polyhedron whose vertices are in one to one correspondence to the feasible solutions of the instance. This polytope is the subject of our investigations. In particular, we present several new classes of inequalities and work out necessary and suucient conditions under which the corresponding inequality deenes a facet. Some of these conditions involve only properties of certain knapsack constraints, and hence, apply to the generalized assignment polytope as well. The results presented here serve as the theoretical basis for solving practical problems. The algorithmic side of our study, i.e., separation algorithms, implementation details and computational experience with a branch and cut algorithm are discussed in the companion paper FMW93].
منابع مشابه
APPROXIMATE ALGORITHM FOR THE MULTI-DIMENSIONAL KNAPSACK PROBLEM BY USING MULTIPLE CRITERIA DECISION MAKING
In this paper, an interesting and easy method to solve the multi-dimensional knapsack problem is presented. Although it belongs to the combinatorial optimization, but the proposed method belongs to the decision making field in mathematics. In order to, initially efficiency values for every item is calculated then items are ranked by using Multiple Criteria Decision Making (MCDA). Finally, ite...
متن کاملSome Results on facets for linear inequality in 0-1 variables
The facet of Knapsack ploytope, i.e. convex hull of 0-1 points satisfying a given linear inequality has been presented in this current paper. Such type of facets plays an important role in set covering set partitioning, matroidal-intersection vertex- packing, generalized assignment and other combinatorial problems. Strong covers for facets of Knapsack ploytope has been developed in the first pa...
متن کاملCyclic group and knapsack facets
Any integer program may be relaxed to a group problem. We define the master cyclic group problem and several master knapsack problems, show the relationship between the problems, and give several classes of facet-defining inequalities for each problem, as well as a set of mappings that take facets from one type of master polyhedra to another.
متن کاملThe Complexity of Lifted Inequalities for the Knapsack Problem
Hartvigsen, D. and E. Zemel, The complexity of lifted inequalities for the knapsack problem, Discrete Applied Mathematics 39 (1992) 11. 123. It is well known that one can obtain facets and valid inequalities for the knapsack polytope by lifting simple inequalities associated with minimal covers. We study the complexity of lifting. We show that recognizing integral lifted facets or valid inequal...
متن کاملAn Efficient Algorithm for Reducing the Duality Gap in a Special Class of the Knapsack Problem
A special class of the knapsack problem is called the separable nonlinear knapsack problem. This problem has received considerable attention recently because of its numerous applications. Dynamic programming is one of the basic approaches for solving this problem. Unfortunately, the size of state-pace will dramatically increase and cause the dimensionality problem. In this paper, an efficient a...
متن کاملA dynamic programming approach for solving nonlinear knapsack problems
Nonlinear Knapsack Problems (NKP) are the alternative formulation for the multiple-choice knapsack problems. A powerful approach for solving NKP is dynamic programming which may obtain the global op-timal solution even in the case of discrete solution space for these problems. Despite the power of this solu-tion approach, it computationally performs very slowly when the solution space of the pr...
متن کامل